

#### Diversity maximization in MapReduce and Streaming

#### Under Cardinality and Matroid Constraints

Andrea Pietracaprina University of Padova

Joint work with:

M. Ceccarello, G. Pucci (U. Padova), and E. Upfal (Brown U.)

[VLDB17] and [WSDM18]





- Problem definition and applications
- Background
- Summary of results
- Our approach (cardinality constraint):
  - Core-set construction
  - MapReduce implementation
  - Streaming implementation
  - Future space savings
- Partition and transversal matroids
- Experiments
- Conclusions and future work

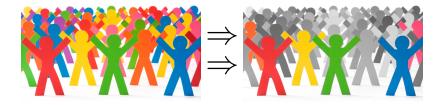


# **Problem definition and applications**



#### Objective:

For a given dataset, determine the most diverse subset of given (small) size  $\boldsymbol{k}$ 





#### Applications





 $\leftarrow \mathsf{News}/\mathsf{document}\ \mathsf{aggregators}$ 



 $\leftarrow$  Facility location



#### Given:

- 1. Set S of points in a metric space  $\Delta$
- 2. Distance function  $d : \Delta \times \Delta \rightarrow R^+ \cup \{0\}$
- 3. (Distance-based) diversity function div :  $2^{\Delta} \rightarrow R^+ \cup \{0\}$
- 4. Integer k > 1

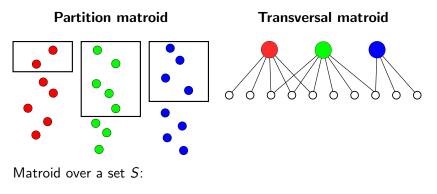
#### Return

$$S^* \subset S, |S^*| = k$$
 s.t.  $S^* = \operatorname{argmax}_{S' \subseteq S, |S'| = k} \operatorname{div}(S')$ 



Matroid constraints

Matroids allow to express more complicated constraints, like categorization of elements



 $\mathcal{M} = (S, \mathcal{I}(S))$  $\mathsf{rank}(\mathcal{M}) = \max_{X \in \mathcal{I}(S)} |X|$ 



#### Given:

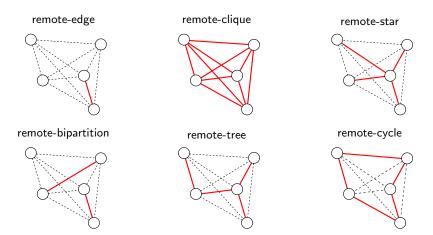
- 1. Set S of points in a metric space  $\Delta$
- 2. Distance function  $d : \Delta \times \Delta \rightarrow R^+ \cup \{0\}$
- 3. (Distance-based) diversity function div :  $2^{\Delta} \rightarrow R^+ \cup \{0\}$
- 4. Matroid  $\mathcal{M} = (S, \mathcal{I}(S))$  of rank rank $(\mathcal{M})$
- 5. Integer  $1 \leq k \leq \operatorname{rank}(\mathcal{M})$

#### Return

$$\mathcal{S}^* \subset \mathcal{S}, \mathcal{S} \in \mathcal{I}(\mathcal{S}), |\mathcal{S}^*| = k$$
 s.t.  $\mathcal{S}^* = \operatorname{argmax}_{\mathcal{S}' \subseteq \mathcal{S}, |\mathcal{S}'| = k} \operatorname{div}(\mathcal{S}')$ 



#### Diversity measures studied in this work



All measures are NP-Hard to optimize



# Background

| Problem            | Seq. Approx. | LB                  |
|--------------------|--------------|---------------------|
| Remote-edge        | 2            | $\geq 2$            |
| Remote-clique      | 2            | $\geq 2 - \epsilon$ |
| Remote-star        | 2            | -                   |
| Remote-bipartition | 3            | -                   |
| Remote-tree        | 4            | $\geq 2$            |
| Remote-cycle       | 3            | $\geq 2$            |

Specialized results (hardness and better approx. ratios) for remote clique and remote edge under Euclidean distances



(Composable) Core-set

#### $\beta$ -core-set [Agarwal et al.'95]

A small subset T (core-set) of input S s.t. div<sub>k</sub>(T) ≥ (1/β) div<sub>k</sub>(S)



► Compute final solution on *T*.

#### $\beta$ -composable core-set [Indyk et al.'14]

- Partitioned input  $S = S_1 \cup S_2 \cup \cdots \cup S_\ell$
- $\beta$ -composable core-sets  $T_i \subset S_i \Rightarrow \bigcup T_i$  is a  $\beta$ -core-set



# Known $\beta\text{-}\mathsf{composable}$ core-sets for diversity maximization under cardinality constraints

|                    | $\beta$        | $\alpha_{\rm seq}$ | $\beta \cdot \alpha_{ m seq}$ |
|--------------------|----------------|--------------------|-------------------------------|
| Remote-edge        | 3              | 2                  | 6                             |
| Remote-clique      | $6 + \epsilon$ | 2                  | $12 + \epsilon$               |
| Remote-star        | 12             | 2                  | 24                            |
| Remote-bipartition | 18             | 3                  | 54                            |
| Remote-tree        | 4              | 4                  | 16                            |
| Remote-cycle       | 3              | 3                  | 9                             |

([Indyk et al.'14,Aghamolaei et al.'15])

- $\alpha_{seq} = best sequential approximation ratio$
- General metric spaces
- Core-set size: k



#### The case of matroid constraints

- ▶ [Abbassi et al. 13]
- Remote-clique measure
- Sequential algorithm for remote-clique based on local search
- ▶  $2 + \epsilon$  approximation
- $\Omega(n^2)$  time

#### MapReduce

FILL'INFORMAZIONE

- Data represented as multiset of key-value pairs
- Algorithms execute as sequences of rounds
- Architecture: cluster of machines (workers)
- One round (distributed among workers):
  - Map function: applied to each key-value pair
  - Reduce function: applied to subsets of key-value pairs grouped by key.
- Shuffle of data at each round
- Performance indicators: #rounds and space required at each worker to execute map/reduce functions

#### Streaming

- One processor with limited space
- Input provided as a continuous stream: too large to fit in the available memory
- $\blacktriangleright \geq 1$  passes over the input
- Performance indicators: #passes and space available at the processor.

Proposition: The known composable core-sets for k-diversity maximization yield 2-round MapReduce and 1-pass Streaming algorithms using  $O\left(\sqrt{k|S|}\right)$  space.

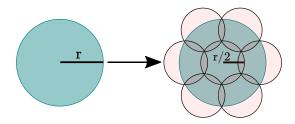


# **Summary of Results**



#### Our setting

Metric spaces of Bounded Doubling Dimension:  $\exists D = O(1)$  s.t. any ball of radius r is covered by  $\leq 2^{D}$  balls of radius r/2



Euclidean spaces.

- Shortest-path distances of mildly expanding topologies.
- Low-dimensional pointsets from arbitrary metric space.

#### Our Results (cardinality constraint):

- Improved  $\beta$ -(composable) core-sets:  $\beta = 1 + \epsilon$
- Overall approximation:  $\alpha_{seq} + \epsilon$
- ▶ 1-pass Streaming and 2-round MapReduce algorithms using space:

|              | Streaming              | MapReduce                                 |
|--------------|------------------------|-------------------------------------------|
| r-edge/cycle | $O(k(c/\epsilon)^D)$   | $O\left(\sqrt{k S (c/\epsilon)^D}\right)$ |
| other div's  | $O(k^2(c/\epsilon)^D)$ | $O\left(k\sqrt{ S (c/\epsilon)^D}\right)$ |

for a suitable constant c.



1 extra pass/round brings space bounds for other div's down to those for r-edge/cycle

|           | Streaming            | MapReduce                                 |
|-----------|----------------------|-------------------------------------------|
| all div's | $O(k(c/\epsilon)^D)$ | $O\left(\sqrt{k S (c/\epsilon)^D}\right)$ |

for a suitable constant c.



#### Our Results (remote-clique, matroid constraints):

- 2-rounds in MapReduce, 1 pass in streaming
- ▶  $2 + \epsilon$  approximation
- space requirements:

|                     | Streaming              | MapReduce                                   |
|---------------------|------------------------|---------------------------------------------|
| Partition matroid   | $O(k^2(c/\epsilon)^D)$ | $O\left(k\sqrt{ S (c/\epsilon)^D}\right)$   |
| Transversal matroid | $O(k^3(c/\epsilon)^D)$ | $O\left(k^2\sqrt{ S (c/\epsilon)^D}\right)$ |

for a suitable constant c.



- ► MapReduce algorithms are oblivious to *D*.
- Streaming algorithms can be made oblivious to D with 1 extra pass.



# **Our approach** (cardinality constaint)



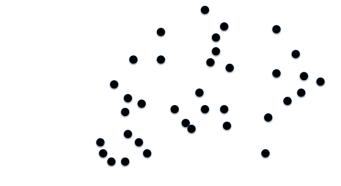
Input dataset: S

Optimal solution  $OPT \subset S$ , with |OPT| = k

**MAIN IDEA:** Compute core-set T such that each  $o \in OPT$  has a (distinct) proxy  $p(o) \in T$  with "small"

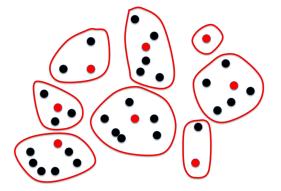
- 1. Partition S into  $\tau > k$  clusters of small radius ( $\tau$  function of doubling dimension)
- 2.  $T = \{$ cluster centers $\}$
- 3. If injectivity of  $p(\cdot)$  required (remote-clique/start/bipartition/tree):  $T = \{\text{cluster centers}\} \cup \{\leq k - 1 \text{ delegates for each cluster}\}.$





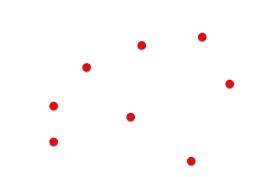
▶ 
$$k = 3, \tau = 8$$





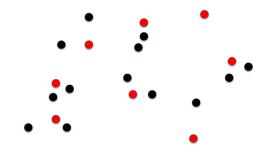
• Compute  $\tau$ -center clustering





▶ No injectivity required:  $T = \{$ cluster centers $\}$   $(|T| = \tau)$ 





▶ Injectivity required:  $T = \{k \text{ points per cluster}\} (|T| \le k \cdot \tau)$ 

- Radius:  $r_k = \min$  radius of k-clustering of S
- Farness:  $\rho_k = \max \min \text{ distance between } k \text{ points of } S$

Claim: For every k,  $r_k \leq \rho_k$ 

Proof: take k centers with Gonzalez85's algorithm (Farthest-First traversal). Their pairwise distnce is at least the radius  $r \ge r_k$  of the associated clustering

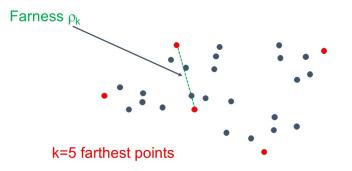


#### Core-set construction: analysis



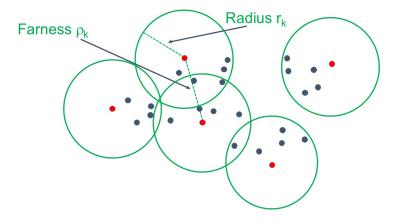


#### Core-set construction: analysis





#### Core-set construction: analysis





#### Claim: If S has doubling dimension D and $\tau = (16/\epsilon)^D k$ then

 $r_{\tau} \leq \epsilon/8r_k$ 



► Focus on remote-clique (similiar for other div's)

• Let 
$$\rho = \operatorname{div}(\mathsf{OPT})/\binom{k}{2}$$

• Observe that: 
$$\rho \ge \rho_k \ge r_k$$

#### Theorem

For  $\epsilon < 1/2$  and  $\tau = (16/\epsilon)^D k$ , T is a  $(1 + \epsilon)$ -core-set for S of size  $O\left(k^2(16/\epsilon)^D\right)$ 

#### Proof.

▶ ∃ an injective  $p(\cdot)$  such that for each  $o \in \mathsf{OPT}$ ,  $p(o) \in T$  and  $d(o, p(o)) \le 2r_{\tau} \le (\epsilon/4)r_k \le (\epsilon/4)\rho_k \le (\epsilon/4)\rho$ 

► Hence:

$$\begin{aligned} \operatorname{div}_{k}(T) &\geq \sum_{o_{1}, o_{2} \in OPT} d(p(o_{1}), p(o_{2})) \text{ (injectivity!)} \\ &\geq \sum_{o_{1}, o_{2} \in OPT} \left[ d(o_{1}, o_{2}) - d(o_{1}, p(o_{1})) - d(o_{2}, p(o_{2})) \right] \\ &\geq \sum_{o_{1}, o_{2} \in OPT} d(o_{1}, o_{2}) - \binom{k}{2} 2(\epsilon/4)\rho \geq \frac{\operatorname{div}_{k}(S)}{(1+\epsilon)} \end{aligned}$$



#### Good clustering?

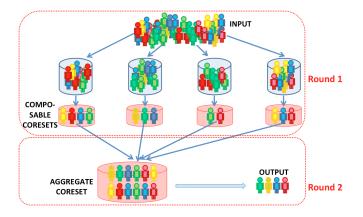
- Optimal *k*-center clustering is NP-hard.
- ► O(1)-approximation (e.g., [Gonzalez85]) suffices.

#### Composability?

- Let  $S = S_1 \cup S_2 \cup \cdots \cup S_\ell$
- Extract a core-set  $T_i \subset S_i$  as before
- $T = \bigcup T_i$  is a  $(1 + \epsilon)$ -core-set of size  $O(\ell k^2 (1/\epsilon)^D)$ .



### MapReduce implementation



- 2 rounds with  $O(k\sqrt{n(c/\epsilon)^D})$  space.
- Obliviousness to D:

use Farthest-First Traversal algorithm for  $\tau\text{-center}$  stopping at  $\tau>k$  ensuring sufficiently small radius.

- Approximation guarantee:  $\alpha_{seq} + \epsilon$ .
- ▶ Random partition yields  $O(\sqrt{kn \log n(c/\epsilon)^D})$  space w.h.p.
- Further decrease in space with multi-round recursion.

### Implementation

- Compute a (1 + ε)-core-set using a variant of the (2 + δ)-approximate τ-center algorithm of [McCuthcen et al.'08], with τ = O ((c/ε)<sup>D</sup>) (knowledge of D required!).
- Run sequential approximation on the coreset.

### Performace

- ▶ 1 pass,  $O\left(k^2(c/\epsilon)^D\right)$  space (no dependence on |S|!)
- Approximation guarantee:  $\alpha_{seq} + \epsilon$ .
- Obliviousness to D can be obtained with an extra pass.

## Coping with injective proxy functions

The diversity problems requiring injective proxy functions incur a  $\Theta(k)$  space blowup (core-sets ={k points per cluster})

### Workaround (idea)

- Generalize diversity problems to multisets and adapt sequential approximation algorithms to work on multisets
- ► Generalized core-set: multiset of cluster centers {c<sub>i</sub>}, each with multiplicity m<sub>i</sub> = min{|C<sub>i</sub>|, k}
- Generalized core-sets feature optimal solutions that can be istantiated into good solutions for the original problem

### Space-efficient Streaming and MapReduce Algorithms

- Compute approximate solution to the generalized problem through generalized core-set
- Second pass (Streaming) or third round (MapReduce) to construct the solution with k distinct points
- Space savings:  $\Theta(k)$  (Streaming) and  $\Theta(\sqrt{k})$  (MapReduce)
- Optimal O(k) streaming space for constant  $\epsilon$  and D



### Partition and transversal matroids

#### Remote-clique problem only.

- Coreset construction (as before)
  - $\tau$ -center clustering, with  $\tau = O(k(c/\epsilon)^D)$ .
  - for each cluster: select suitable set of delegates

#### Delegates for partition matroid

For each cluster select an independent set of size  $\leq k$ 

### Delegates for transversal matroid

For each cluster select:

- Independent set of size k (if exists)
- Oterwise, up to k points for each category of the matroid

Remark: generalized to arbitrary matroids at the expense of larger space



# Experiments

### Experiments: datasets



### Cardinality constraints

- Synthetic data: Euclidean spaces
- Real data: musiXmatch dataset
  - ▶  $\approx 250K$  songs.
  - bag-of-words model, cosine distance

### Matroid constraints

- Wikipedia dump:
  - $\blacktriangleright$   $\approx$  5M pages
  - partition matroid of rank 100
- MetroLyrics:
  - ► ≈ 264K songs
  - transversal matroid of rank 89



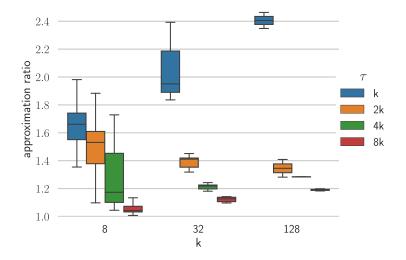
### Platform:

- 16-node cluster (Intel i7)
- ▶ 18GB-RAM/256GB-SSD per node
- 10Gbps ethernet
- Apache Spark (open source code: github.com/Cecca/diversity-maximization)



# Experiments: effectiveness of approach (cardinality constraint)

### Streaming algorithm on musiXmatch dataset





### Our algorithm (CCPU) vs. [Aghamolaei et al.'15] (AFZ)

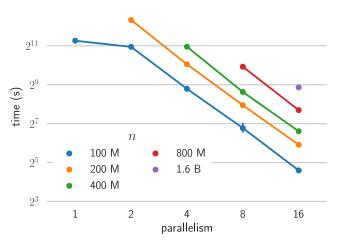
- MapReduce using 16 machines
- remote-clique measure
- 4*M* points in  $\mathbb{R}^3$  (max feasible for AFZ)

• Our algorithm: 
$$\tau = 128$$

|   | approximation |       | time (s) |      |
|---|---------------|-------|----------|------|
| k | AFZ           | CPPU  | AFZ      | CPPU |
| 4 | 1.023         | 1.012 | 807.79   | 1.19 |
| 6 | 1.052         | 1.018 | 1,052.39 | 1.29 |
| 8 | 1.029         | 1.028 | 4,625.46 | 1.12 |



- Synthetic data: points from  $\mathbb{R}^3$
- 1 processor  $\equiv$  streaming algorithm
- τ = 2048

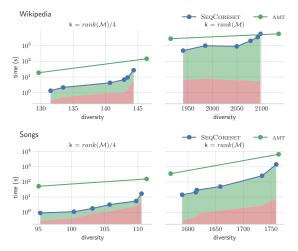




Sequential implementaton of the algorithm vs. state of the art local search [Abbassi et al '13]

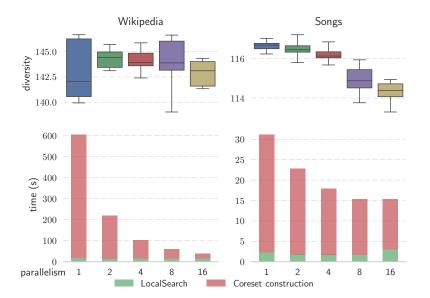
DIPARTIMENTO

DI INGEGNERIA DELL'INFORMAZIONE





# Experiments: MR scalability and quality (matroid constraints)





## Conclusions





- ► (1 + ε)-(composable) core-set construction on metric spaces of constant doubling dimension
- Space savings with additional rounds/passes
- Experiments on real and synthetic data demonstrate effectiveness, efficiency and scalability of our approach
- Open problems: improved space requirements (e.g., get rid of exponential dependency on D); better space/round tradeoffs in MapReduce

