
Diversity maximization
in MapReduce and Streaming

Under Cardinality and Matroid Constraints

Andrea Pietracaprina
University of Padova

Joint work with:

M. Ceccarello, G. Pucci (U. Padova), and E. Upfal (Brown U.)

[VLDB17] and [WSDM18]

Outline

I Problem definition and applications

I Background

I Summary of results
I Our approach (cardinality constraint):

I Core-set construction
I MapReduce implementation
I Streaming implementation
I Future space savings

I Partition and transversal matroids

I Experiments

I Conclusions and future work

Problem definition and applications

Diversity maximization

Objective:

For a given dataset, determine the most diverse subset of given
(small) size k

⇒
⇒

Applications

← News/document aggregators

↑ e-commerce ↑

← Facility location

Diversity maximization: formal definition

Given:

1. Set S of points in a metric space ∆

2. Distance function d : ∆×∆→ R+ ∪ {0}
3. (Distance-based) diversity function div : 2∆ → R+ ∪ {0}
4. Integer k > 1

Return

S∗ ⊂ S , |S∗| = k s.t. S∗ = argmaxS ′⊆S,|S ′|=k div(S ′)

Matroid constraints

Matroids allow to express more complicated constraints, like
categorization of elements

Partition matroid Transversal matroid

Matroid over a set S :

M = (S , I(S))

rank(M) = max
X∈I(S)

|X |

Diversity maximization under matroid constraints

Given:

1. Set S of points in a metric space ∆

2. Distance function d : ∆×∆→ R+ ∪ {0}
3. (Distance-based) diversity function div : 2∆ → R+ ∪ {0}
4. Matroid M = (S , I(S)) of rank rank(M)

5. Integer 1 ≤ k ≤ rank(M)

Return

S∗ ⊂ S ,S ∈ I(S), |S∗| = k s.t. S∗ = argmaxS ′⊆S ,|S ′|=k div(S ′)

Diversity measures studied in this work

remote-edge remote-clique remote-star

remote-bipartition remote-tree remote-cycle

All measures are NP-Hard to optimize

Background

Sequential approximation and hardness results

Problem Seq. Approx. LB

Remote-edge 2 ≥ 2

Remote-clique 2 ≥ 2− ε
Remote-star 2 –

Remote-bipartition 3 –

Remote-tree 4 ≥ 2

Remote-cycle 3 ≥ 2

Specialized results (hardness and better approx. ratios) for remote
clique and remote edge under Euclidean distances

(Composable) Core-set

β-core-set [Agarwal et al.’95]

I A small subset T (core-set) of input S s.t.
divk(T) ≥ (1/β) divk(S)

I Compute final solution on T .

β-composable core-set [Indyk et al.’14]

I Partitioned input S = S1 ∪ S2 ∪ · · · ∪ S`
I β-composable core-sets Ti ⊂ Si ⇒

⋃
Ti is a β-core-set

Previous work

Known β-composable core-sets for diversity maximization
under cardinality constraints

([Indyk et al.’14,Aghamolaei et al.’15])

β αseq β · αseq

Remote-edge 3 2 6
Remote-clique 6 + ε 2 12 + ε
Remote-star 12 2 24
Remote-bipartition 18 3 54
Remote-tree 4 4 16
Remote-cycle 3 3 9

I αseq = best sequential approximation ratio

I General metric spaces

I Core-set size: k

Previous work

The case of matroid constraints

I [Abbassi et al. 13]

I Remote-clique measure

I Sequential algorithm for remote-clique based on local search

I 2 + ε approximation

I Ω(n2) time

MapReduce and Streaming frameworks

MapReduce

I Data represented as multiset of key-value pairs

I Algorithms execute as sequences of rounds

I Architecture: cluster of machines (workers)
I One round (distributed among workers):

I Map function: applied to each key-value pair
I Reduce function: applied to subsets of key-value pairs grouped

by key.

I Shuffle of data at each round

I Performance indicators: #rounds and space required at each
worker to execute map/reduce functions

MapReduce and Streaming frameworks

Streaming

I One processor with limited space

I Input provided as a continuous stream: too large to fit in the
available memory

I ≥ 1 passes over the input

I Performance indicators: #passes and space available at the
processor.

Proposition: The known composable core-sets for k-diversity
maximization yield 2-round MapReduce and 1-pass Streaming

algorithms using O
(√

k |S |
)
space.

Summary of Results

Summary of results

Our setting

Metric spaces of Bounded Doubling Dimension: ∃D = O(1) s.t.
any ball of radius r is covered by ≤ 2D balls of radius r/2

r r/2

I Euclidean spaces.

I Shortest-path distances of mildly expanding topologies.

I Low-dimensional pointsets from arbitrary metric space.

Summary of results

Our Results (cardinality constraint):

I Improved β-(composable) core-sets: β = 1 + ε

I Overall approximation: αseq + ε

I 1-pass Streaming and 2-round MapReduce algorithms using space:

Streaming MapReduce

r-edge/cycle O(k(c/ε)D) O
(√

k |S |(c/ε)D
)

other div’s O(k2(c/ε)D) O
(
k
√
|S |(c/ε)D

)

for a suitable constant c.

Summary of results

I 1 extra pass/round brings space bounds for other div′ s down to
those for r-edge/cycle

Streaming MapReduce

all div’s O(k(c/ε)D) O
(√

k |S |(c/ε)D
)

for a suitable constant c.

Summary of results

Our Results (remote-clique, matroid constraints):

I 2-rounds in MapReduce, 1 pass in streaming

I 2 + ε approximation

I space requirements:

Streaming MapReduce

Partition matroid O(k2(c/ε)D) O
(
k
√
|S |(c/ε)D

)
Transversal matroid O(k3(c/ε)D) O

(
k2
√
|S |(c/ε)D

)
for a suitable constant c.

Summary of results

I MapReduce algorithms are oblivious to D.

I Streaming algorithms can be made oblivious to D with 1 extra
pass.

Our approach

(cardinality constaint)

Core-set construction: algorithm

Input dataset: S

Optimal solution OPT ⊂ S , with |OPT| = k

MAIN IDEA: Compute core-set T such that each o ∈ OPT has a
(distinct) proxy p(o) ∈ T with “small”

1. Partition S into τ > k clusters of small radius (τ function of
doubling dimension)

2. T = {cluster centers}
3. If injectivity of p(·) required (remote-clique/start/bipartition/tree):

T = {cluster centers} ∪ {≤ k − 1 delegates for each cluster}.

Core-set construction: algorithm

I k = 3, τ = 8

Core-set construction: algorithm

I Compute τ -center clustering

Core-set construction: algorithm

I No injectivity required: T = {cluster centers} (|T | = τ)

Core-set construction: algorithm

I Injectivity required: T = {k points per cluster} (|T | ≤ k · τ)

Core-set construction: analysis

I Radius: rk = min radius of k-clustering of S

I Farness: ρk = max min distance between k points of S

Claim: For every k, rk ≤ ρk
Proof: take k centers with Gonzalez85’s algorithm (Farthest-First
traversal). Their pairwise distnce is at least the radius r ≥ rk of
the associated clustering

Core-set construction: analysis

Core-set construction: analysis

Core-set construction: analysis

Core-set construction: analysis

Claim: If S has doubling dimension D and τ = (16/ε)Dk then

rτ ≤ ε/8rk

Core-set construction: analysis

I Focus on remote-clique (similiar for other div’s)

I Let ρ = div(OPT)/
(k

2

)
I Observe that: ρ ≥ ρk ≥ rk

Theorem
For ε < 1/2 and τ = (16/ε)Dk, T is a (1 + ε)-core-set for S of size
O
(
k2(16/ε)D

)

Core-set construction: analysis

Proof.

I ∃ an injective p(·) such that for each o ∈ OPT, p(o) ∈ T and

d(o, p(o)) ≤ 2rτ ≤ (ε/4)rk ≤ (ε/4)ρk ≤ (ε/4)ρ

I Hence:

divk(T) ≥
∑

o1,o2∈OPT

d(p(o1), p(o2)) (injectivity!)

≥
∑

o1,o2∈OPT

[d(o1, o2)− d(o1, p(o1))− d(o2, p(o2))]

≥
∑

o1,o2∈OPT

d(o1, o2)−
(
k

2

)
2(ε/4)ρ ≥ divk(S)

(1 + ε)

Core-set construction: other issues

Good clustering?

I Optimal k-center clustering is NP-hard.

I O (1)-approximation (e.g., [Gonzalez85]) suffices.

Composability?

I Let S = S1 ∪ S2 ∪ · · · ∪ S`
I Extract a core-set Ti ⊂ Si as before

I T =
⋃

Ti is a (1 + ε)-core-set of size O
(
`k2(1/ε)D

)
.

MapReduce implementation

MapReduce implementation

I 2 rounds with O(k
√
n(c/ε)D) space.

I Obliviousness to D:

use Farthest-First Traversal algorithm for τ -center stopping at
τ > k ensuring sufficiently small radius.

I Approximation guarantee: αseq + ε.

I Random partition yields O(
√
kn log n(c/ε)D) space w.h.p.

I Further decrease in space with multi-round recursion.

Streaming implementation

Implementation

I Compute a (1 + ε)-core-set using a variant of the
(2 + δ)-approximate τ -center algorithm of [McCuthcen et
al.’08], with τ = O

(
(c/ε)D

)
(knowledge of D required!).

I Run sequential approximation on the coreset.

Performace

I 1 pass, O
(
k2(c/ε)D

)
space (no dependence on |S |!)

I Approximation guarantee: αseq + ε.

I Obliviousness to D can be obtained with an extra pass.

Further space savings

Coping with injective proxy functions

The diversity problems requiring injective proxy functions incur a
Θ(k) space blowup (core-sets ={k points per cluster})

Workaround (idea)

I Generalize diversity problems to multisets and adapt
sequential approximation algorithms to work on multisets

I Generalized core-set: multiset of cluster centers {ci}, each
with multiplicity mi = min{|Ci |, k}

I Generalized core-sets feature optimal solutions that can be
istantiated into good solutions for the original problem

Further space savings

Space-efficient Streaming and MapReduce Algorithms

I Compute approximate solution to the generalized problem
through generalized core-set

I Second pass (Streaming) or third round (MapReduce) to
construct the solution with k distinct points

I Space savings: Θ(k) (Streaming) and Θ(
√
k) (MapReduce)

I Optimal O(k) streaming space for constant ε and D

Partition and transversal matroids

I Remote-clique problem only.

I Coreset construction (as before)

I τ -center clustering, with τ = O
(
k(c/ε)D

)
.

I for each cluster: select suitable set of delegates

Delegates for partition matroid

For each cluster select an independent set of size ≤ k

Delegates for transversal matroid

For each cluster select:

I Independent set of size k (if exists)

I Oterwise, up to k points for each category of the matroid

Remark: generalized to arbitrary matroids at the expense of larger space

Experiments

Experiments: datasets

Cardinality constraints

I Synthetic data: Euclidean spaces
I Real data: musiXmatch dataset

I ≈ 250K songs.
I bag-of-words model, cosine distance

Matroid constraints

I Wikipedia dump:
I ≈ 5M pages
I partition matroid of rank 100

I MetroLyrics:
I ≈ 264K songs
I transversal matroid of rank 89

Experiments: setup

Platform:
I 16-node cluster (Intel i7)

I 18GB-RAM/256GB-SSD per node

I 10Gbps ethernet

I Apache Spark (open source code:
github.com/Cecca/diversity-maximization)

Experiments: effectiveness of approach
(cardinality constraint)

Streaming algorithm on musiXmatch dataset

Experiments: comparison with state-of-art
(cardinality constraint)

Our algorithm (CCPU) vs. [Aghamolaei et al.’15] (AFZ)

I MapReduce using 16 machines

I remote-clique measure

I 4M points in R3 (max feasible for AFZ)

I Our algorithm: τ = 128

approximation time (s)

k AFZ CPPU AFZ CPPU

4 1.023 1.012 807.79 1.19
6 1.052 1.018 1,052.39 1.29
8 1.029 1.028 4,625.46 1.12

Experiments: scalability
(cardinality constraint)

I Synthetic data: points from R3

I 1 processor ≡ streaming algorithm
I τ = 2048

Experiments: comparison with previous work
(matroid constraint)

Sequential implemen-
taton of the algorithm
vs. state of the art lo-
cal search [Abbassi et
al ’13]

130 135 140 145

diversity

100

101

102

103

ti
m

e
(s

)

k = rank(M)/4

1950 2000 2050 2100

diversity

k = rank(M)

Wikipedia SeqCoreset amt

95 100 105 110

diversity

100

101

102

103

104

ti
m

e
(s

)

k = rank(M)/4

1600 1650 1700 1750

diversity

k = rank(M)

Songs SeqCoreset amt

Experiments: MR scalability and quality
(matroid constraints)

140.0

142.5

145.0

d
iv

er
si

ty

Wikipedia

114

116

Songs

1 2 4 8 16parallelism
0

100

200

300

400

500

600

ti
m

e
(s

)

1 2 4 8 16
0

5

10

15

20

25

30

LocalSearch Coreset construction

Conclusions

Conclusions

I (1 + ε)-(composable) core-set construction on metric spaces of
constant doubling dimension

I Space savings with additional rounds/passes

I Experiments on real and synthetic data demonstrate effectiveness,
efficiency and scalability of our approach

I Open problems: improved space requirements (e.g., get rid of
exponential dependency on D); better space/round tradeoffs in
MapReduce

